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Studies have been made on the stability of planar, cylindrical, and spherical crys- 
tallization fronts in a one-compound melt in the presence of small perturbations 
in the phase-transition surface. 

There are several papers [1-5] on the morphological stability of a phase-transition 
front. These studies are important because, e.g., the loss of stability in a planar crystal- 
lization front results in a dendritic structure, which has a marked effect on the properties 
of the metal. 

Here we continue a study of the stability in self-modeling processes begun in [i], in 
which crystallization is restricted by a single diffusion process occurring under isothermal 
conditions. Here we consider thermal conductivity without allowance for diffusion, and we 
examine the temperature perturbations in the crystal and in the melt. Methods from the 
theory of hydrodynamic stability are used to examine the stability of the crystallization 
front in a one-component melt with respect to small nonstationary perturbations in front 
shape. The results confirm the conclusions of [i] and eliminate the inaccuracies in [2-4], 
which arose because the small perturbations imposed on the crystallization front were sta- 
tionary. It is shown that if the crystallization front is a planar, cylindrical, or spheri- 
cal surface and if the melt is supercooled, then such a front is unstable. This has been 
observed by experiment [9] for lead, tin, and zinc. It occurs physically because the super- 
cooling increases away from the crystallization front and any part of the surface of the 
crystal that finds itself in a region of higher supercooling grows more rapidly than the 
planar front. 

In [5] it was concluded that the perturbations should increase in proportion to exp 
(at:/~); here we analyze this conclusion and show that it cannot be taken as reliable. The 
perturbations should increase in accordance with the exponential law exp(Bt). 

We consider the stability of a planar surface in the crystallization of a one-component 
melt. The unperturbed process is described by the solution to 
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where T~ is the temperature in the melt and Ta is that in the crystal, while condition (3) 
reflects the heat balance at the crystallization front. 

The self-modeling solution to (1)-(3) takes the form 
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where the dimensionless coefficient a is defined from (3). 
obeyed at the crystallization front [• = X(t)]: 
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The following relations are 
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For small perturbations superimposed on the phase-transition surface, the problem takes 
the form 
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where T~ are the perturbations in the temperature distribution; E, small perturbation in the 
shape of the crystallization front; K(E) is positive if the surface is concave toward the 
crystal; and F, effective surface tension. We introduce the dimensionless variables 
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to get the following system of equations: 
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k~(e) is the dimensionless curvature of the crystallization surface in the variables of (8). 

We represent the functions ~t, ~2 in the form 
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From conditions (9) we have a system of three homogeneous linear equations in the con- 
stants ~:, ~=, and Eo. The characteristic equation for this system defines m as a function 

of the dimensionless parameter ~ and the parameter y: 

co ---- --v2L2 ~1L1 1 - -  'V$~(~Z2Z 2 ~dlGClZ1 l - - ~ # 2  1 ~,• ~I (1 - -  ?l• ( 10 )  
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If the melt is supercooled, i.e., T' < To, then it is readily seen that ~x > 0. We use the 
characteristic values for the physical constants for a one-component melt to get that in this 
case y~ > 0 [8]. Therefore, perturbations with the following wave numbers are unstable: 

1 
• < .~--=-- (ll) 
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We get the following formula for the dimensional perturbation wavelength I: 

From (i0) we can write an equation to determine ~ as a function of y and • which is to 
be solved numerically. As a result we get that an idealized unbounded planar front is un- 
stable in relation to sufficiently long-wave perturbations in the case of a supercooled melt, 
because such perturbations are acted on by the weak surface tension. If the melt is super- 
heated (ATI > 0), then on the basis of (3) we readily get that ~ > 0 and a planar front is 
stable. This agrees with physical concepts on the process. 

If the crystallization front is spherical or cylindrical, the basic relations derived in 
[i] are retained, since the temperature distribution within the crystal is homogeneous. 
These relations differ from those in the present situation in that parameter y has a differ- 
ent dependence on the parameters. The conclusions of [i] are readily transferred to this 
case. 

In [5], the following formula was derived for the displacement of the interface: 

(p, t) ~ Bo i do (kp) exp (~ (k, t)) kdk, 
0 

where ~(k, t) = k(fa D~--~:kDt); here k, D, and t are the dimensional wave number, the dif- 
fusion coefficient, and time, correspondingly. The method of steepest descent was used to 
calculate the integral, and it was found that for large t the value of ~(p, t) is propor- 
tional to exp(Btx/4). By virtue of the fact that the characteristic transverse dimension 
of the crystallization front is bounded in a real system, there is stable motion of a planar 
front with a speed greater than u L = 2~D/~LL , where ZL is the minimum permissible wave num- 
ber. Instability sets in when the speed of the crystallization front becomes less than u L. 
The instant when u L is attained is t L = 4u~af/D. We pass to dimensionless variables in ac- 
cordance with the formulas ~ = u~t/D, z = kD/u L. Then for ~ we get ~(k, t) = ~(2~/T-T--~IZfT), 
where • can be taken as small. 

The integral can be calculated for large ~ by the steepest-descent method. But then 
4a = << T, and consequently T L << T. On the other hand, the perturbations become unstable at 
times of the order of TL, and therefore a planar interface between the phases may not exist 
at time T. Consequently, it is undesirable to use the steepest-descent method in this case, 
and the conclusion that the perturbations increase in proportion to exp (fit x/~) is incorrect. 

NOTATION 

az, af, melt and crystal thermal diffusivity; K, kl, curvature; k, melt-to-crystal ther- 
mal diffusivity ratio; Lx, Lf, ~x, ~2 Y, parameters introduced in (9); T~, melt temperature; 
T=, crystal temperature; UL, critical velocity; X, front coordinate; x, y, z, linear coordin- 
ates; x', planar front perturbation; e, growth-rate parameter; F, surface tension; g, Eo, di- 
mensionless perturbation of the front shape and amplitude; ~, ~, ~, dimensionless coordi~: 
nates;• , dimensionless wave number; I, perturbation wavelength; ~, dimensionless time; 
~i, r dimensionless amplitudes of temperature perturbations; ~, dimensionless perturbation 
increment. Subscripts: --~and +~, state far from the front; 0, state at the front. 
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THERMOELASTIC STABILITY OF COOLED LASER MIRRORS 

V. V. Kharitonov and S. B. Koshelev UDC 539.3:621.375.826 

The article examines the interconnection between permissible thermal stresses, de- 
formations, and thermal loads on laser mirrors fixed by different systems. 

Installations based on powerful lasers contain on the path of the light a large number 
of elements, especially mirrors. On each of them the incident wave front is being distorted. 
Accumulation of distortions on different elements leads to defocusing of the beam and makes 
it unsuitable for practical purposes. The quality of the mirrors, as one of the causes of 
distortion of the wave front in multielement systems, must therefore satisfy particularly 
stringent requirements. Normal deformation{ must not exceed 1/10-1/40 of the wavelength of 
the laser beam [i]. In addition, the transverse temperature gradient in the mirror, which 
is proportional to the absorbed thermal flux, may cause impermissible stresses in it. Thus 
the permissible luminous loads on laser mirrors are limited by the permissible thermal strains 
and stresses. The present article shows how the condition of mounting a plane mirror and the 
intensity of cooling affect the thermal stresses and strains in the mirror and the permissi- 
ble luminous load imposed on the mirror. 

The simplest form of a laser mirror is a plane disk with constant thickness ~ and radius 
R. One surface of the disk is illuminated (heated), and the other surface is cooled by a 
heat carrier with constant heat transfer coefficient ~. The intensity of the irradiation 
is uniform over its entire surface, i.e., it does not depend on the radial coordinate. (The 
case with nonuniform illumination requires a special analysis.) 

We will first examine two limit cases of mounting mirrors: freely supported by a rigid 
base and rigidly secured on its circumference. 

When a mirror is heated by a laser pulse, the pulse duration t is such that the thick- 
ness a/~ of the heated layer (within the time that the pulse acts) is much smaller than the 
thickness 6 of the mirror; the temperature field in it T(x, t) is correlated with the pulse 
energy I (J) by the equation of thermal balance 
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